top of page

Publication

01

Hou PS, Miyoshi G, Hanashima C. (2019)  Sensory cortex wiring requires preselection of short- and long-range projection neurons through an Egr-Foxg1-COUP-TFI network. Nature Communications 10(1):3581. doi: 10.1038/s41467-019-11043-w.

02

Li H, Miki T, Almeida GM, Hanashima C, Matsuzaki T, Kuo CJ, Watanabe N, Noda M.(2019) RECK in Neural Precursor Cells Plays a Critical Role in Mouse Forebrain Angiogenesis. iScience 19:559-571. 

03

04

05

06

Toma, K., Wang, TC., Hanashima, C. (2016) Encoding and decoding time in neural development. Development, Growth and Diffentiation. 58:  59-72.

07

Toma, K., Hanashima, C. (2015) Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Frontiers in Neuroscience, 9: 274

08

Bullmann, T., Arendt, T., Frey, U., Hanashima, C. (2015) A transportable, inexpensive electroporator for in utero electroporation. Development, Growth and Differentiation, 57: 5, 369-377 

09

10

Toma, K., Kumamoto, T., Hanashima, C. (2014) The timing of upper-layer neurogenesis is conferred by sequential derepression and negative feedback from deep-layer neurons. Journal of Neuroscience, 34(16):13259-76. This week in the Journal

Kumamoto, T., Hanashima, C. (2014) Neuronal subtype specification in establishing mammalian neocortical circuits. Neuroscience Research, 86: 37-49.  

11

12

13

14

15

Yeh, M., Gonda, Y., Mommersteeg, M.T., Barber, M., Ypsilanti, A.R., Hanashima, C., Parnavelas, J.G., Andrews, W.D. (2014) Robo1 modulates proliferation and neurogenesis in the developing neocortex. Journal of Neuroscience 34: 5717-31. 

Kumamoto, T., Toma, K., Gunadi, McKenna W., Kasukawa T., Katzman S., Chen, B., Hanashima, C. (2013) Foxg1 coordinates the switch from non-radially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Reports 3: 931-945. 

Kasukawa T, Masumoto KH, Nikaido I, Nagano M, Uno KD, Tsujino K, Hanashima C, Shigeyoshi Y, Ueda HR. (2011) Quantitative expression profile of distinct functional regions in the adult mouse brain. PLoS One. 2011; 6(8): e23228

Gonda, Y., Andrews, W.D., Tabata, H., Namba, T., Parnavelas J.G., Nakajima K., Kohsaka S., *Hanashima, C. & Uchino, S. (2013) Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Cerebral Cortex 23:1495-508. *Correspondence.

Nomura, T., Hanashima C. (2014) Neocortical development and evolution. Neuroscience Research 86:1-2.

16

Fishell G., Hanashima C. (2009) Cerebral Cortex: Symmetric versus asymmetric cell division. in Encyclopedia of Neuroscience, Larry E. Squire (Ed.), Elsevier 785-791.

17

*Fishell, G. & *Hanashima C. (2008) Pyramidal neurons grow up and change their mind. Neuron 57, 333-338. *Correspondence.

18

Hanashima, C., Fernandes M, Hebert J, Fishell G. (2007) The role of Foxg1 and dorsal midline  signaling in the generation of Cajal-Retzius subtypes. Journal of Neuroscience 27:11103-11.

19

20

 Hanashima, C., Molnar Z, Fishell G. (2006) Building bridges to the cortex. Cell  125: 24-27.

Hanashima, C., Li, S.C., Shen, L., Lai, E., Fishell, G. (2004) Foxg1 suppresses early cortical cell fate. Science 303: 56-9.

花嶋かりな  (2014) 大脳皮質ニューロンの運命決定機構 –時空間制御によるニューロン産生のメカニズム– 「神経幹細胞研究の最前線」 医学のあゆみ

花嶋かりな(2008)大脳皮質ニューロンの運命決定機構. 「神経回路の制御と脳機能発現のメカニズム」. 実験医学増刊号 137: 1832-1838

bottom of page